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On the theory of diffusional shrinkage 
of a pore in real crystals 

Y . V .  K O R N Y U S H I N  
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Driving forces and diffusionat mechanisms of a pore shrinkage in a crystal, containing 
other sources (sinks) of vacancies are considered. The finite length of a diffusional path 
of an excess vacancy in the bulk of a crystal and the difference in the atomic chemical 
potential on a plain surface and that on the considered sources in the bulk of a crystal 
are taken into account as is the f inite rate of a formation of vacancies on the surface of 
a pore. An expression describing the duration of the shrinkage of a spherical pore is 
obtained. This interval is essentially (by 30 times and more) smaller than that for a pore 
in an ideal crystal. 

I .  Introduction 
A spherical pore is a convenient model for the 
investigation of  different diffusional processes 
which take place in non-equilibrium systems 
in particular during sintering and joining of  
materials. The diffusional shrinkage of  a pore 
in a crystal free of  other sources and sinks of  
vacancies has been theoretically investigated 
previously [1 ,2 ] .  The shrinkage of  a pore, inter- 
sected by block boundaries and dislocation lines 
(pore size is supposed to exceed the period of  a 
dislocation net or block size), when conditions 
for the quasi-equilibrium on the surface of  a pore 
are fulfilled, was theoretically investigated by 
Slyozov [3]. There, only the diffusion along the 
block boundaries and the dislocation cores was 
taken into account. 

Surface tension, 3', is usually regarded as the 
only driving force of  pore shrinkage. However, 
other driving forces of the relaxation of  non- 
equilibrium systems containing pores are well- 
known. Let us consider, for example, a crystal, 
containing pores of  a radius ro and dislocation 
loops of  the vacancy type of  a radius Po. It is 
well-known that for the given parameters (in 
particular Po) there exists a critical value of  pore 
radius r e c~ 7, such that if ro > re the pores grow 
inspite of  the surface tension. They also grow if 
3  ̀= 0. On the other hand, if the dislocation loops 
are of  the interstitial type, then the pores shrink 

even if 3' = O. The driving forces are determined 
by the difference in the atomic chemical potential 
(ACP), ~, on the line of  a dislocation loop and on 
the surface of  a pore in a non-equilibrium crystal. 

The vacancy concentration in a thin layer near 
the pore surface is usually supposed to be equal 
to the equilibrium concentration in respect of  the 
formation of  vacancies on the surface of  a pore. 
This is so only if the time interval, during which a 
vacancy is formed on the surface of  a pore, is 
essentially smaller than that during which a 
vacancy is present in the layer concerned. This 
condition is usually fulfilled in a crystal free 
of  other sources and sinks of  vacancies, because 
diffusional currents are sufficiently small in such 
a crystal. Diffusional currents in a real crystal 
may be so intensive that the equilibrium vacancy 
concentration in a particular layer cannot be 
achieved. The rate of  an approach of  a vacancy 
concentration near the pore surface to the equi- 
librium concentration depends on the density 
of  sources (sinks) of vacancies (surface defects) 
on the pore surface. If this density is sufficiently 
high, the alleged rate of  an approach is consider- 
able and the diffusional process is quick. In the. 
opposite case, the rate of  the motion of  the 
surface is slow. 

Pore shrinkage due to bulk diffusion in a crystal, 
containing other sources (sinks) of  vacancies, is 
treated in the present paper. The  nature and the 
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values of parameters of the bulk sources (sinks) 
of vacancies are regarded as different from those 
of sources (sinks), situated on the pore surface. 
The possibility of vacancy depletion in a thin 
layer surrounding the pore surface is also taken 
into account. 

2. Theory 
If there is no temperature gradient, the vacancy 
current J in the framework of the linear theory 
depends only on the gradient of  the ACP: 

NoDv 
J -  k r  vu, (1) 

where D v is the vacancy diffusion coefficient, 
Ne is the equilibrium (with respect to the bulk 
sources-s inks)  average vacancy concentration, 
k T  is the absolute temperature in the energy units. 
The process of pore shrinkage is so slow that the 
corresponding process of vacancy diffusion may be 
described by the stationary continuity equation, 
which may be written (for the case of one type 
of sources (sinks) of vacancies in the bulk of a 
crystal) by analogy to [4] as: 

N(J) -- Ne(1 -- (~/kT) 
(7,  J) -t = 0,  (2) 

l- 

where N(J) is the average vacancy concentration in 
a small "representative volume", situated around 
the position J, r ~ k T  is the interaction energy of 
the vacancy and the stress field, N e(1 - - (p /kT) i s  
the equilibrium concentration of vacancies near 
the relevant position J, and r is the time interval 
required for the distribution of vacancies in the 
bulk of a material to approach the equilibrium 
distribution. This interval depends on the proper- 
ties of the sources (sinks), their density and the 
vacancy mobility. If there are several types of 
sources (sinks) of vacancies in a crystal, the second 
term on the left-hand side of Equation 2 ought 
to be written as [5] : 

U - - U i e ( 1 - - O / k T )  , 

i Ti  

where N~ and r i refer to the sources (sinks) of the 
/-type, respectively. However, the sum may be 
written as I N -  Ne(1 -- d)/kT)]/~ if we put 

1 ,-, 1 

T ~=". T i 
and 

Are = r ~ (Nie/ri). 
i 

Thus one may also use Equation 2 in this case. 
ACP is determined by the formula: 

P = - -  0 - -  k T  in ~ ( o  J) - Pe + (P -- Pc), 

where Pe -- -- k T  In (Ne/No), and No is the num- 
ber of the atoms per unit volume of the crystal 
material. The inequality IP--Pe[ ~/Se permits us 
to use the linear theory. 

Using Equations 1 and 2 one may obtain an 
equation for (p -- Pc): 

( A - - l  ~ ) @ - u e )  = 0, (3) 

where l =  (Dvz) 1/2 is the average length of a 
diffusional path of an excess vacancy in the bulk 
of a crystal, containing sinks of vacancies. Let us 
consider a spherical pore of radius ro. Equation 3 
has the following solution of the spherical sym- 
metry: 

A kTro ro -- r 
P --Pc = e x p - - ,  (4) 

N e r  l 

where r is the distance from the centre of a pore. 
Constant A is determined by the boundary con- 
dition, which may be found using the following 
reasons. Let us consider a thin layer of thickness 
a surrounding the pore. The number of vacancies 
going through the outer surface of the layer per 
unit time is 41rr~J(Jo). As vacancies leave the 
layer, the vacancy concentration near the pore 
surface N(ro) does not attain equilibrium, corre- 
sponding to the value of ACP on the surface of a 
pore, value Np. Hence the sources, situated on 
the surface of a pore, emit vacancies, the number 
of which may be written: 

47rr~a[Np -- N (ro )]/r a 

(here zx is time interval which characterizes proper- 
ties of an ensemble of the surface sources (sinks) 
of vacancies. This interval is a mean duration of 
the presence of an excess vacancy within a par- 
ticular thin layer when the vacancy is drifting 
along the surface of a pore). It is obvious that 
zl is proportional to the thickness of the layer: 
rl  = a/v (here v is a parameter which characterizes 
the ability of the ensemble of the surface sources 
to supply deficient vacancies). The number of 
vacancies, leaving the layer per unit time, is equal 
to that emitted from the pore surface. Thus we 
obtain the boundary conditions: 

J(ro) = v [ N p - - N ( r o ) ] .  (5) 

Using Equations 1,4 and 5, one obtains: 
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A = vrol(Np --Ne)/[vrol  + (ro + / )Dv] .  (6) 

If v -+ 0% Equation 5 yields: 

A = N p - - N  e. 

This corresponds to the case when the vacancy 
concentration near the pore surface attains equi- 
librium value (with respect to the formation of 
vacancies on the pore surface) [4]. 

2.1. Rate and duration of pore shrinkage 
Vacancy current is determined by Equations 1, 4 
and 6. The rate of  pore shrinkage is obviously 
determined by the formula: 

dV 1 
~s (J, n) ds, (7) 

dt No 

where V is the volume of a pore, n is a unit vector, 
normal to the pore surface s, directed outward. 

Using Equations 1,4 and 7, one may obtain: 

dt No l ' (8) 

Here, as before, Pe denotes the ACP on the bulk 
sources and /~- -p l  denotes that related to the 
surface sources (without consideration of the 
contribution of the surface tension). The effect 
of the surface tension is to reduce the ACP on the 
pore surface by 27/roNo. This yields: 

Ul + (27/roNo) 
Xp = Ne exp k T  (9) 

The exponential index in Equation 9 is usually 
small. Expanding the exponent and retaining the 
first term of the series in Equation 9, and using 
Equations 6, 8 and 9, one may obtain: 

dr 0 Dv NoPlr~ + (27 + lplNo)ro + 2T/ 

dt kTNo (Iv + Dv)rg + lroDv 

(10) 

Here D = DyNe/No is the self-diffusion coefficient. 
Using Equation 10, one may obtain an expression 
for the duration of pore shrinkage: 

t = k T  v l + D v  
Dvpl  

fro {x 2 + [IDv/(Vl + Dv)]X } dx 

x j r ,  x 2 + [l + (27/paNo)]X + (271/piNo)' 

(11) 

where r0 and r~ are the initial and the final radii, 

respectively. From Equation 11 one obtains: 

t = to + kTN~ In ro + l k T  

where 

27 

D(27- -p l lNo)  rl + l D lqv  plNo 

2To/ ) ro+(27 /P ,No)  
2"), ------~-JNo + Dv lnrl  + (2T/pIN0) '  

(12) 

k T  vl + Dv ro -- rl 
to - (13) 

D v p~ 

3. Discussion 
We may easily see that Equation 13 yields an 
exaggerated duration of pore shrinkage at v-+ 
In fact, at v ~ ~,  retaining under the integral in 
Equation 11 only those terms proportional to x 2, 
one immediately obtains Equation 13. At arbitrary 
values of v the factor before the integral in Equa- 
tion 1 1 exceeds its limiting value corresponding 
to v ~  ~.  Remembering that the last term (pro- 
portional to Dv) in Equation 12 is always negative, 
one may conclude that Equation 13 always yields 
an exaggerated duration of pore shrinkage. But for 
sufficiently large pores, when ro, rl >> (27/paNo), 
I, the shrinkage duration is determined chiefly by 
to. At D v ~ v l  and Pa = 0, Equations 12 and 13 
yield the result received earlier [4] for the case 
when the value of the vacancy concentration near 
the pore surface is equal to the equilibrium con- 
centration (see formula 4.3.17 in [4]). For the 
case when D v ~ V l ,  P l = 0  and l>>ro one may 
obtain a well-known formula for the duration of 
pore shrinkage in an ideal crystal [1,2]:  

kTNo 3 
tl - ~TD (ro --r~). (14) 

To estimate the role of the investigated mechanisms 
of pore shrinkage let us take T = 1273 K, No = 
3 x 10 2s m -3 , 3' = 1.5 N m -1 , ro = 5 X 1 0  - 6  m, 
r 1 = 4 •  10 - 6 m , D = 1 0  - l s m  2sec - 1 , I = 1 0  -6m,  
P l = I . 6 x  10 -22J, D v = 1 0  -11m 2sec -a,  v =  
10-4m sec -1 . For such a case one may obtain 
from Equation 14 t i = 3.6 x 106 sec. Using Equa- 
tions 13 and 14 one may obtain: 

to vl + D v 6 7 

ti vplNo r~ + rorl + r~" 

At the taken values of the parameters we have 
to/t i = 0.033. At Pl = 0 and at the values of  other 
parameters taken as before, Equations 12 to 14 
yield tit  i = 0.2. 
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These estimations show that the investigated 
mechanisms of  diffusional pore shrinkage are very 
effective. These mechanisms are particularly 
important for the processes of  sintering a hardened 
powder, containing a considerable number of  
sources (sinks) of  vacancies (for instance, dislo- 
cations). 

It is worthwhile noting that from the results 
obtained one may see that the diffusional pro- 
cesses of  a motion of  a boundary may occur 
without surface tension forces if/11 4: 0. There are 
cases when the contribution of  the surface tension 
in these processes is negligible, and the main 
contribution is due to the difference between the 
ACP on the sources in the bulk of  a crystal and 
that on the surface, ~1. In such cases the process 
may result in an increase in surface area. Using 
Equation 10, one may see that the rate of  motion 
of  that part of  a surface of  interest here depends 
essentially on the comparative values of  l and 
Dv/v. The largest rate is achieved for plots where 
vl>>Dv. At v l ~ D  v the rate is smallest. If  the 
p lo t  with large v is surrounded by plots with 
small v (small number of  surface defects), the 

advance of  the plots is not uniform and this results 
in an increase in the total area of  the surface. The 
latter is not essential when #a ~ 27K/No (K is the 
curvature). These results offer an explanation for 
the often experimentally observed "germination" 
of  large flat pores [6].  
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